110 research outputs found

    Laser Engineering Net Shaping Method in the Area of Development of Functionally Graded Materials (FGMs) for Aero Engine Applications - A Review

    Get PDF
    Modern aero engine components are subjected to extreme conditions were high wear rate, excessive fatigue cycles, and severe thermal attack are inevitable. These aggressive conditions reduce the service life of components. Its generic effect is magnified in the light of understanding the fact that aero engine parts are highly sensitive to functional and dimensional precision; therefore, repair and replacement are great factors that promote downtime during operation. Hard thermal barrier coatings have been used in recent times due to their optimized properties for maximum load bearing proficiency with high temperature capability to meet performance and durability required. Nevertheless, less emphasis is being given to the coating-substrate interaction. Functionally graded structures have better synergy and flexibility in composition than coatings, giving rise to controlled microstructure and improved properties in withstanding acute state of affairs. Such materials can be fabricated using Laser Engineered Net Shaping (LENS™), a laser-based additive manufacturing technique. LENS™ offers a great deal in rapid prototyping, repair, and fabrication of three-dimensional dense structures with superior properties in comparison with traditionally fabricated structures. The manufacture of aero engine components with functionally graded materials, using LENS™, can absolutely mitigate the nuisance of buy-to-fly ratio, lost time in repair and maintenance, and maximize controlled dimension and multi-geometric properties, enhanced wear resistance, and high temperature strength. This review presents an extensive contribution in terms of insightful understanding of processing parameters and their interactions on fabrication of functionally graded stainless steel, which definitely influence the final product quality

    Parametric Variables in Electro-deposition of Composite Coatings

    Get PDF
    Nowadays, synergy of the attractive properties of materials while avoiding limitations of their use in isolation is a major driver for flexibility in design and manufacture. This allows tailoring of materials’ properties to meet specifications. Composite technology utilizes an excellent combination of properties: strength, stiffness, light weight, wear, chemical, corrosion, and temperature resistance, which transcend those of the constituent materials. Engineering structures, equipment, and vessels in key industries that are material-dependent are susceptible to deterioration process and damage over time in their service conditions. Composite coatings through electro-deposition offer a reliable cost-effective means of impacting special surface properties for corrosion protection, better appearance, and mechanical properties’ enhancement. The properties of the composite coatings can be optimized by varying the type, size, amount and distribution of the particles content incorporated among others

    Electrodeposition of Functional Coatings on Bipolar Plates for Fuel Cell Applications – A Review

    Get PDF
    The issue of corrosion and degradation has been evaluated as one of the major sources of concern in the history and trend of materials development and their applications in engineering. Design, process, and production consideration of materials hinge on the motive of built-to-last technology in their lifetime applications. The “World Corrosion Organization” has calculated that the direct cost of corrosion worldwide is over 3% of global gross domestic product (GDP)—approximately US$2.2 trillion—every year

    Computatonal Analysis of System and Design Parameters of Electrodeposition for Marine Applications

    Get PDF
    The financial prudence of the global world is shaken due to the vigor induced by corrosion as the degradation of essential assets, namely, oil and gas platforms and marine machineries, appears as a red-flagged situation. The exacerbation created by chemical degradation of these assets is as a result of the presence of saltwater, and the highly dominating activity of salt in the atmosphere poses a critical influence in selecting the mode of corrosion prevention to be integrated. As the hunger for longer term service and cost effectiveness of protection increases, studies are clustered in the search of new corrosion-resistant coatings while adhering to the increasing stringent environmental code of practice. Porosity is a key factor which is considered in the development of corrosion-resistant coatings, stimulating localized forms of corrosion, such as galvanic and crevice corrosion. Nevertheless, researches have been implemented to coin this challenge by acquiring full understanding of effective parameters of salt bath conditions, their interactions, and influence on the degree of uniform electrodeposition. A significant contribution is presented in the light of reviewing the possibility of computational analysis of system and design parameters in optimizing the deposition rate and quality

    Tribological and Corrosion Performance of Electrodeposited Nickel Composite Coatings

    Get PDF
    The inclusion of second-phase particles in nickel-based matrix to fabricate composite coatings presents a promising solution to combating corrosion and wear deterioration of materials during service. Composite coatings possess better surface properties such as wear resistance, high microhardness, thermal stability, and corrosion resistance than the traditional nickel coatings. Their excellent properties enable them to be used in advanced industrial applications where they will be constantly exposed to severe and degrading environments. There are various surface modification techniques that are employed to produce these coatings and electrodeposition has received wide range of use in fabrication of nickel matrix composites. This technique is associated with low cost, simplicity of operation, versatility, high production rates, and few size and shape limitations. To produce advanced electrodeposits with better performance during application, the optimization and further developments of the process remain vital. Therefore, this chapter aims to review the electrofabrication and properties of nickel composite/nanocomposite coatings for corrosion and wear applications

    Gluconates as Corrosion Inhibitor of Aluminum in Various Corrosive Media

    Get PDF
    Corrosion processes are responsible for huge losses in industry. Though organic, inorganic and mixed material inhibitors were used for a long time to combat corrosion, the environmental toxicity of organic corrosion inhibitors has prompted the search for inorganic corrosion inhibitors. The effect of gluconates as novel corrosion inhibitors on the corrosion of aluminum alloy in acidic and saline media was investigated by electrochemical and weight loss techniques. The effect of inhibitor concentration was also investigated. High resolution scanning electron microscopy equipped with energy dispersive spectroscopy (HR-SEM/EDS) was used to characterize the surface morphology of the metal before and after corrosion. Experimental results revealed that gluconates in the studied solution decreased the corrosion rate at the different concentrations studied. The experimental results obtained from potentiodynamic polarization method showed that the presence of the gluconates in 3.5% NaCl and 0.5 M H2SO4 solutions decreases the corrosion current densities (icorr) and corrosion rates (CR), and increases the polarization resistance (Rp). It was observed that the inhibitor efficiency depends on the corrosive media, concentration of the inhibitor and the substrate material. The adsorption characteristics of the gluconates were also described. Good correlation exists between the results obtained from both methods

    Spark Plasma Sintered High-Entropy Alloys: An Advanced Material for Aerospace Applications

    Get PDF
    High-entropy alloys (HEAs) are materials of high property profiles with enhanced strength-to-weight ratios and high temperature-stress-fatigue capability as well as strong oxidation resistance strength. HEAs are multi-powder-based materials whose microstructural and mechanical properties rely strongly on stoichiometry combination of powders as well as the consolidation techniques. Spark plasma sintering (SPS) has a notable processing edge in processing HEAs due to its fast heating schedule at relatively lower temperature and short sintering time. Therefore, major challenges such as grain growth, porosity, and cracking normally encountered in conventional consolidation like casting are bypassed to produce HEAs with good densification. SPS parameters such as heating rate, temperature, pressure, and holding time can be utilized as design criteria in software like Minitab during design of experiment (DOE) to select a wide range of values at which the HEAs may be produced as well as to model the output data collected from mechanical characterization. In addition to this, the temperature-stress-fatigue response of developed HEAs can be analyzed using finite element analysis (FEA) to have an in-depth understanding of the detail of inter-atomic interactions that inform the inherent material properties

    Laser Surface Modification — A Focus on the Wear Degradation of Titanium Alloy

    Get PDF
    Over the years, engineering materials are being developed due to the need for better service performance. Wear, a common phenomenon in applications requiring surface interaction, leads to catastrophic failure of materials in the industry. Hence, preventing this form of degradation requires the selection of an appropriate surface modification technique. Laser surface modification techniques have been established by researchers to improve mechanical and tribological properties of materials. In this chapter, adequate knowledge about laser surface cladding and its processing parameters coupled with the oxidation, wear and corrosion performances of laser-modified titanium has been reviewed

    Fabrication and Properties of Zinc Composite Coatings for Mitigation of Corrosion in Coastal and Marine Zone

    Get PDF
    Deterioration of metals and alloys during service due to corrosion and wear phenomena shortens materials’ life span and structural integrity particularly in aggressive environments such as coastal and marine. This degradation also limits the use of these materials in most industrial applications. Therefore, the improvement of the quality of these materials in order to combat these challenges in industry remains critical. Surface modification techniques are employed to enhance materials’ properties to enable better performance and to extend their applications in demanding environments. Electrodeposition has been a useful method developed to improve the corrosion and mechanical properties of materials. In the present contribution, ample knowledge about electrodeposition of Zn composite/nanocomposite coatings and their characteristics are reviewed to address coastal and marine degradation of metals and alloys

    High Entropy Alloys for Aerospace Applications

    Get PDF
    In the aerospace industry, materials used as modern engine components must be able to withstand extreme operating temperatures, creep, fatigue crack growth and translational movements of parts at high speed. Therefore, the parts produced must be lightweight and have good elevated-temperature strength, fatigue, resistant to chemical degradation, wear and oxidation resistance. High entropy alloys (HEAs) characterize the cutting edge of high-performance materials. These alloys are materials with complex compositions of multiple elements and striking characteristics in contrast to conventional alloys; their high configuration entropy mixing is more stable at elevated temperatures. This attribute allows suitable alloying elements to increase the properties of the materials based on four core effects , which gives tremendous possibilities as potential structural materials in jet engine applications. Researchers fabricate most of these materials using formative manufacturing technologies; arc melting. However, the challenges of heating the elements together have the tendency to form hypoeutectic that separates itself from the rest of the elements and defects reported are introduced during the casting process. Nevertheless, Laser Engineering Net Shaping (LENS™) and Selective Laser Melting (SLM); a powder-based laser additive manufacturing process offers versatility, accuracy in geometry and fabrication of three-dimensional dense structures layer by layer avoiding production errors
    • …
    corecore